

Precision Operational Amplifiers

1 FEATURES

- **Low Offset Voltage: $\pm 0.2\text{mV}$ (TYP)**
- **Low Bias Current: $\pm 10\text{pA}$ (TYP)**
- **Gain Bandwidth Product: 2MHz**
- **Low Quiescent Current: 1mA (TYP)**
- **Overload Recovery Time: $1.6\mu\text{s}$**
- **Supply Voltage Range: 3.3V to 32V**
- **No External Components Required**
- **Extended Temperature: -40°C to $+125^\circ\text{C}$**
- **Micro Size Packages: SOP8**

2 APPLICATIONS

- **Optical Network Control Circuits**
- **Sensors and Controls**
- **Wireless Base Station Control Circuits**
- **Cellular and Cordless Phones**
- **Photodiode Amplification**
- **Precision Filters**
- **Instrumentation**
- **A/D Converters**
- **Laptops and PDAs**
- **Medical and Industrial Instrumentation**

3 DESCRIPTIONS

The RS862X is a low noise, low offset voltage and high voltage operational amplifier, which can be designed into a wide range of applications. The RS862X has a gain-bandwidth product of 2MHz, a slew rate of $1.2\text{V}/\mu\text{s}$ and a quiescent current of 1mA at wide power supply range.

The RS862X is designed to provide optimal performance in low noise systems. It provides rail-to-rail output swing into heavy loads.

The RS862X is available in Green SOP8 packages. It operates over an ambient temperature range of -40°C to $+125^\circ\text{C}$ under single power supplies of 3.3V to 32V or dual power supplies of $\pm 1.65\text{V}$ to $\pm 16\text{V}$.

Device Information ⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RS8621	SOP8	4.90mm x 3.90mm
RS8622	SOP8	4.90mm x 3.90mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

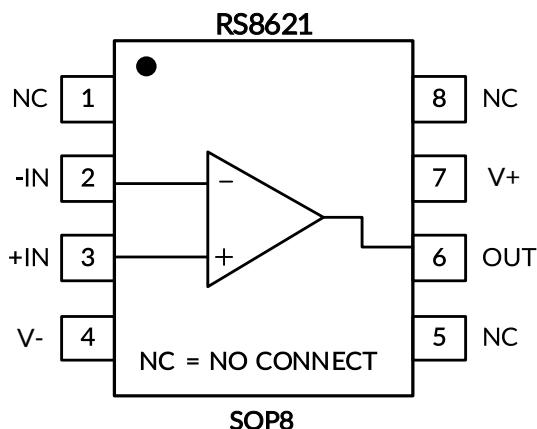
Table of Contents

1 FEATURES	1
2 APPLICATIONS	1
3 DESCRIPTIONS	1
4 REVISION HISTORY	3
5 PACKAGE/ORDERING INFORMATION ⁽¹⁾	4
6 PIN CONFIGURATION AND FUNCTIONS	5
7 SPECIFICATIONS.....	7
7.1 Absolute Maximum Ratings	7
7.2 ESD Ratings	7
7.3 Recommended Operating Conditions.....	7
7.4 Electrical Characteristics.....	8
7.5 Typical Characteristics	10
8 APPLICATION AND IMPLEMENTATION.....	12
8.1 Power Supply Bypassing and Layout	12
8.2 Grounding	12
8.3 Input-to-Output Coupling	12
8.4 Differential Amplifier	12
8.5 Instrumentation Amplifier	13
8.6 Active Low-Pass Filter.....	13
9 LAYOUT	14
9.1 Layout Guidelines.....	14
9.2 Layout Example	14
10 PACKAGE OUTLINE DIMENSIONS	15
11 TAPE AND REEL INFORMATION.....	16

4 REVISION HISTORY

Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.0	2023/05/11	Preliminary version completed
A.1	2023/07/03	1. Delete MSOP-8 Package 2. Update the minimum Operating Voltage to 3.3V 3. Update ELECTRICAL CHARACTERISTICS
A.1.1	2024/03/01	Modify packaging naming
A.2	2024/06/24	1. Add MSL on Page 4@RevA.1.1 2. Update PACKAGE note

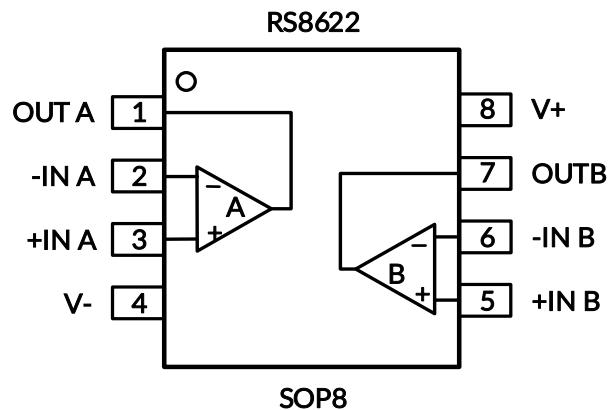

5 PACKAGE/ORDERING INFORMATION ⁽¹⁾

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
RS8621XK	SOP8	8	1	-40°C ~125°C	RS8621	MSL3	Tape and Reel, 4000
RS8622XK	SOP8	8	2	-40°C ~125°C	RS8622	MSL3	Tape and Reel, 4000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) RUNIC classify the MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F. Please align with RUNIC if your end application is quite critical to the preconditioning setting or if you have special requirement.

6 PIN CONFIGURATION AND FUNCTIONS


PIN DESCRIPTION

NAME	PIN	I/O ⁽¹⁾	DESCRIPTION
	RS8621		
	SOP8		
-IN	2	I	Negative (inverting) input
+IN	3	I	Positive (noninverting) input
NC ⁽²⁾	1,5,8	-	No internal connection (can be left floating)
OUT	6	O	Output
V-	4	-	Negative (lowest) power supply
V+	7	-	Positive (highest) power supply

(1) I = Input, O = Output.

(2) There is no internal connection. Typically, GND is the recommended connection to a heat spreading plane.

PIN CONFIGURATION AND FUNCTIONS

PIN DESCRIPTION

NAME	PIN	I/O ⁽¹⁾	DESCRIPTION
	RS8622		
	SOP8		
-INA	2	I	Inverting input, channel A
+INA	3	I	Noninverting input, channel A
-INB	6	I	Inverting input, channel B
+INB	5	I	Noninverting input, channel B
OUTA	1	O	Output, channel A
OUTB	7	O	Output, channel B
V-	4	-	Negative (lowest) power supply
V+	8	-	Positive (highest) power supply

(1) I = Input, O = Output.

7 SPECIFICATIONS

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
Voltage	Supply, $V_S = (V+) - (V-)$			36	V
	Signal input pin ⁽²⁾		(V-) -0.3	(V+) +0.3	
	Signal output pin ⁽³⁾		(V-) -0.3	(V+) +0.3	
Current	Signal input pin ⁽²⁾		-10	10	mA
	Signal output pin ⁽³⁾		-10	10	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾	SOP8		110	°C/W
Temperature	Operating range, T_A		-40	125	°C
	Junction, T_J ⁽⁵⁾		-40	150	
	Storage, T_{stg}		-65	150	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less.

(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3V beyond the supply rails should be current-limited to ±10mA or less.

(4) The package thermal impedance is calculated in accordance with JESD-51.

(5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
		Charged-Device Model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	
		Machine Model (MM)	±200	

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

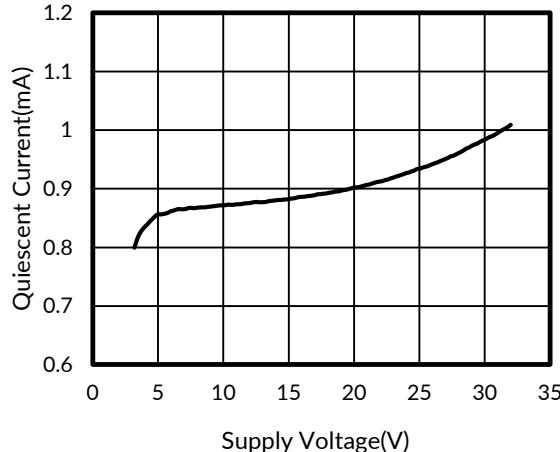
7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

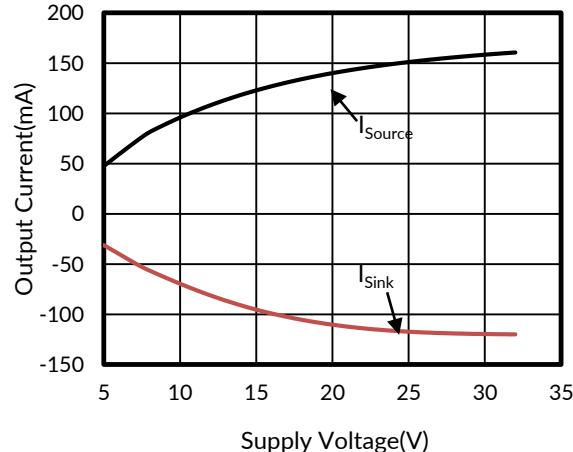
		MIN	NOM	MAX	UNIT
Supply voltage, $V_S = (V+) - (V-)$	Single-supply	3.3		32	V
	Dual-supply	±1.65		±16	

7.4 Electrical Characteristics

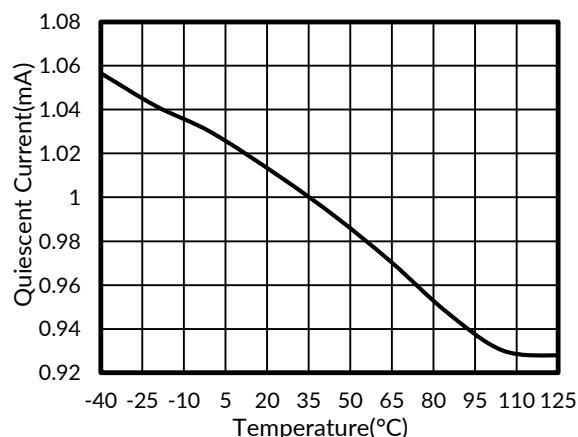
(At $T_A=+25^\circ\text{C}$, $V_S=3.3\text{V}$ to 32V , $R_L=10\text{k}\Omega$ connected to $V_S/2$, and $V_{OUT}=V_S/2$, $V_{CM}=V_S/2$, Full ⁽⁹⁾ = -40°C to $+125^\circ\text{C}$, unless otherwise noted.) ⁽¹⁾

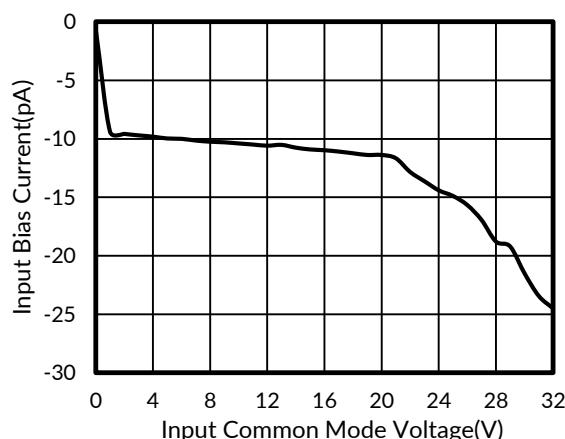

PARAMETER	CONDITIONS	T _J	RS862X			UNIT	
			MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾		
POWER SUPPLY							
V_S	Operating Voltage Range		25°C	3.3		32	
I_Q	Quiescent Current Per Amplifier	$V_S=\pm 2.5\text{V}$, $I_O=0\text{mA}$	25°C	1	1.5	mA	
		$V_S=\pm 16\text{V}$, $I_O=0\text{mA}$	25°C	1.4	1.8		
$PSRR$	Power-Supply Rejection Ratio	$V_S=5\text{V}$ to 32V	25°C	82	100		
INPUT							
V_{OS}	Input Offset Voltage	$V_S=5\text{V}$, $V_{CM}=V_S/2$	25°C	-0.4	± 0.2	0.4	mV
			Full		± 1		
		$V_S=32\text{V}$, $V_{CM}=V_S/2$	25°C	-0.9	± 0.4	0.9	
			Full		± 1		
$V_{OS\ Tc}$	Input Offset Voltage Average Drift	$V_{CM}=V_S/2$	Full		± 5		$\mu\text{V}/^\circ\text{C}$
I_B	Input Bias Current ⁽⁴⁾⁽⁵⁾	$V_{CM}=0\text{V}$	25°C		± 10		pA
I_{OS}	Input Offset Current ⁽⁴⁾	$V_{CM}=0\text{V}$	25°C		± 10		pA
V_{CM}	Common-Mode Voltage Range		25°C	(V-)		(V+)-2	V
$CMRR$	Common-Mode Rejection Ratio	$V_S=\pm 16\text{V}$ $V_{CM}=(V-)$ to $(V+)-2\text{V}$	25°C	87	115		dB
OUTPUT							
A_{OL}	Open-Loop Voltage Gain	$R_L=10\text{K}\Omega$, $V_O=(V-)+0.5\text{V}$ to $(V+)-0.5\text{V}$	25°C	117	150		dB
V_{OH}	Output Swing from Rail	$V_S=\pm 16\text{V}$, $R_L=10\text{K}\Omega$	25°C	15.7			V
V_{OL}						-15.7	V
I_{SOURCE}	Output Source Current ⁽⁶⁾⁽⁷⁾	$V_S=10\text{V}$	25°C	65	142		mA
I_{SINK}	Output Sink Current ⁽⁶⁾⁽⁷⁾			45	103		
C_{LOAD}	Capacitive Load Drive		25°C		1		nF
FREQUENCY RESPONSE							
SR	Slew Rate ⁽⁸⁾	$G=+1$, $C_L=100\text{pF}$	25°C		1.2		$\text{V}/\mu\text{s}$
GBW	Gain-Bandwidth Product	$G=10$, $V_{PP\ Vin}=50\text{mV}$, $R_L=10\text{K}\Omega$	25°C		2		MHz
t_S	Settling Time, 0.1%	$V_S=\pm 16\text{V}$, $G=+1$, $C_L=100\text{pF}$, Step=7V	25°C		8		μs
t_{OR}	Overload Recovery Time	$V_{IN}\cdot\text{Gain}\geq V_S$, $G=-100$	25°C		1.6		μs
t_{ON}	Turn On Time	$G=1$	25°C		75		μs
NOISE							
E_n	Input Voltage Noise	$f=0.1\text{Hz}$ to 10Hz , $V_S=\pm 2.5\text{V}$	25°C		4.3		μV_{pp}
e_n	Input Voltage Noise Density ⁽⁴⁾	$f=1\text{KHz}$	25°C		14		$\text{nV}/\sqrt{\text{Hz}}$

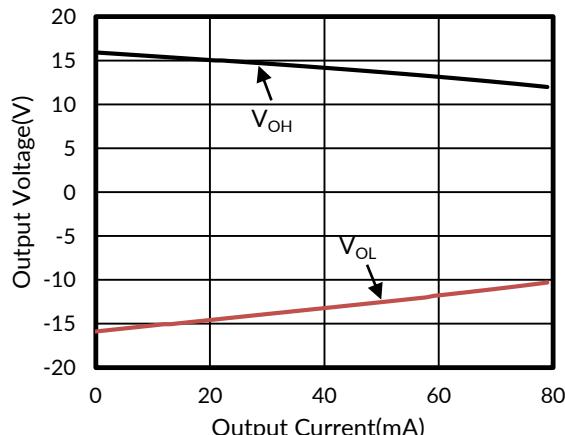
NOTE:


- (1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (4) This parameter is ensured by design and/or characterization and is not tested in production.
- (5) Positive current corresponds to current flowing into the device.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.
- (7) Short circuit test is a momentary test.
- (8) Number specified is the slower of positive and negative slew rates.
- (9) Specified by characterization only.

7.5 Typical Characteristics


NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.
At $T_A = +25^\circ\text{C}$, $V_S = \pm 16\text{V}$, unless otherwise noted.


Figure 1. Supply Voltage vs Quiescent Current


Figure 2. Supply Voltage vs Output Current

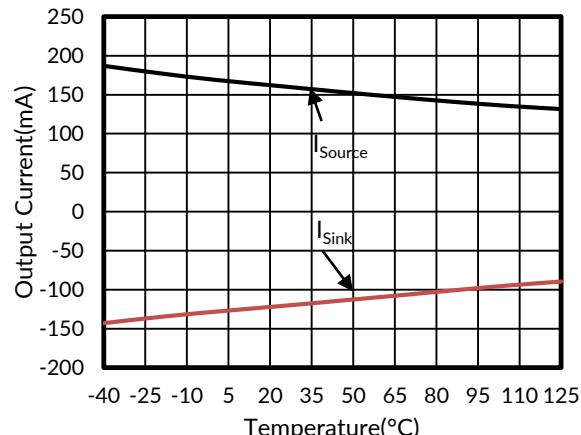
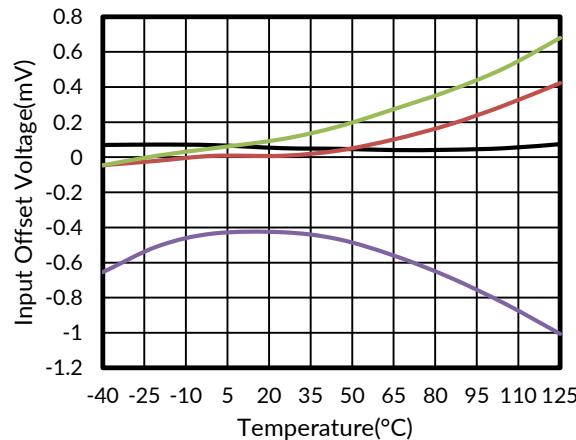
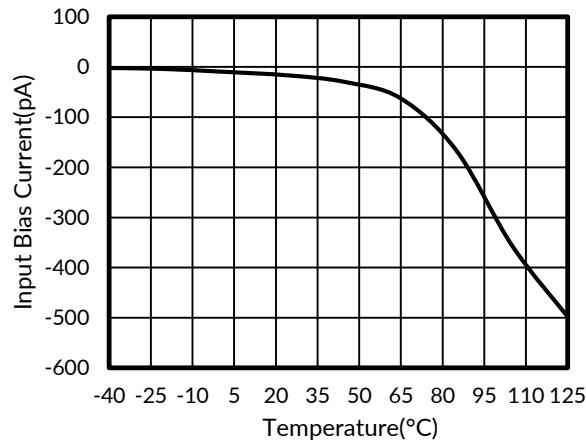
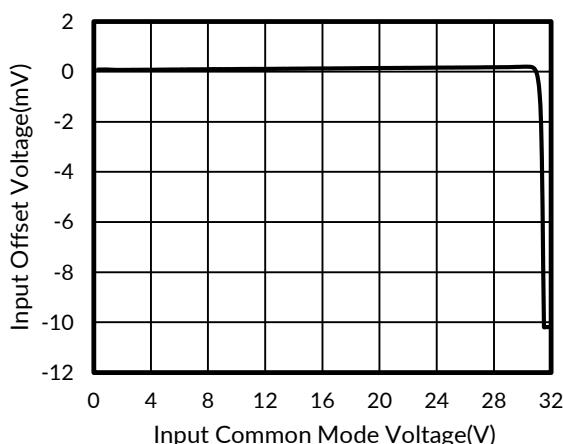

Figure 3. Quiescent Current vs Temperature

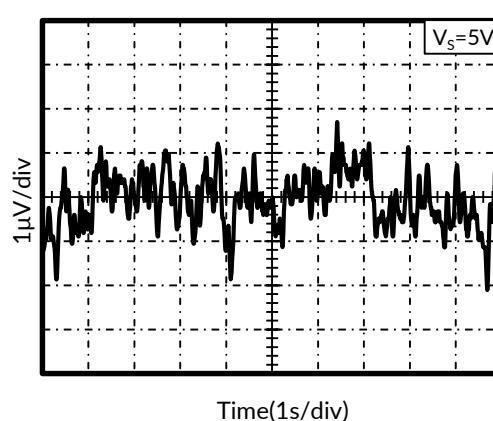
Figure 4. Input Bias Current vs Input Common Mode Voltage

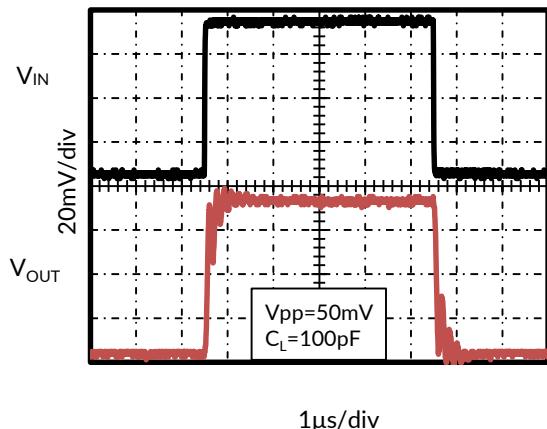

Figure 5. Output Voltage vs Output Current


Figure 6. Output Current vs Temperature

Typical Characteristics


NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.
At $T_A = +25^\circ\text{C}$, $V_S = \pm 16\text{V}$, unless otherwise noted.


Figure 7. Input Offset Voltage vs Temperature


Figure 8. Input Bias Current vs Temperature

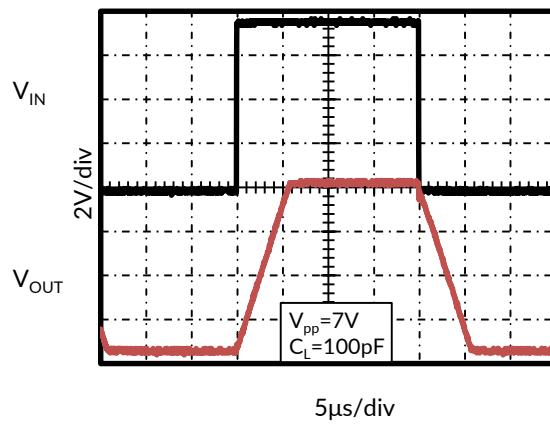
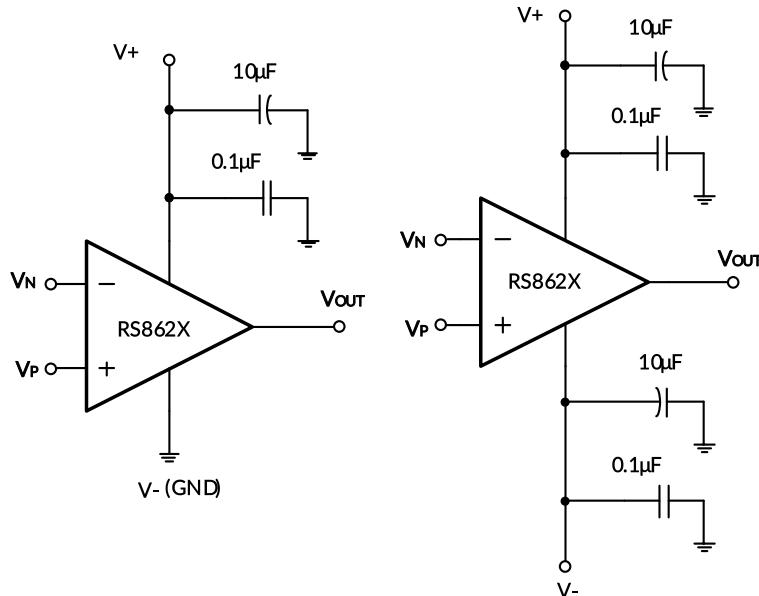

Figure 9. Input Offset Voltage vs Input Common Mode Voltage

Figure 10. 0.1Hz to 10Hz Input Voltage Noise

Figure 11. Small-Signal Step Response

Figure 12. Large-Signal Step Response

8 APPLICATION AND IMPLEMENTATION


Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Power Supply Bypassing and Layout

The RS862X operates from either a single 3.3V to 32V supply or dual $\pm 1.65V$ to $\pm 16V$ supplies. For single-supply operation, bypass the power supply $V+$ with a $0.1\mu F$ ceramic capacitor which should be placed close to the $V+$ pin. For dual-supply operation, both the $V+$ and the $V-$ supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $10\mu F$ tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

Figure 13. Amplifier with Bypass Capacitors

8.2 Grounding

A ground plane layer is important for RS862X circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

8.3 Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

8.4 Differential Amplifier

The circuit shown in Figure 14 performs the difference function. If the resistor ratios are equal ($R_4/R_3 = R_2/R_1$), then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

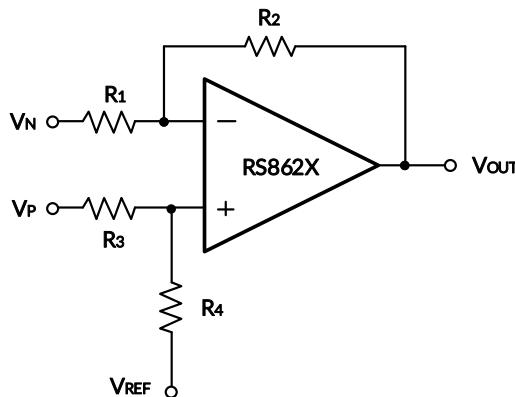


Figure 14. Differential Amplifier

8.5 Instrumentation Amplifier

The circuit in Figure 15 performs the same function as that in Figure 14 but with a high input impedance.

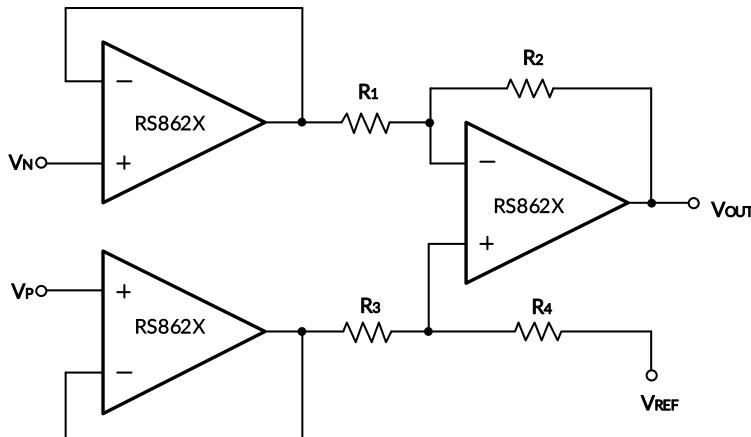


Figure 15. Instrumentation Amplifier

8.6 Active Low-Pass Filter

The low-pass filter shown in Figure 16 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

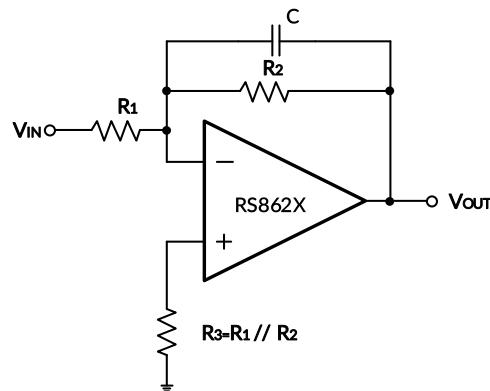
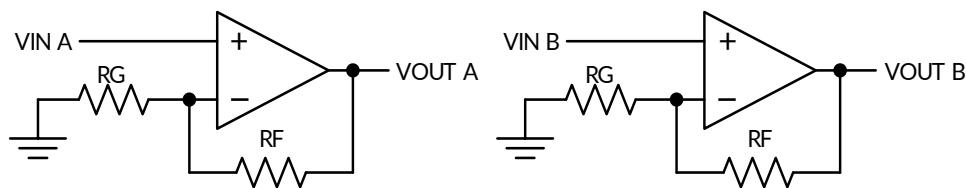
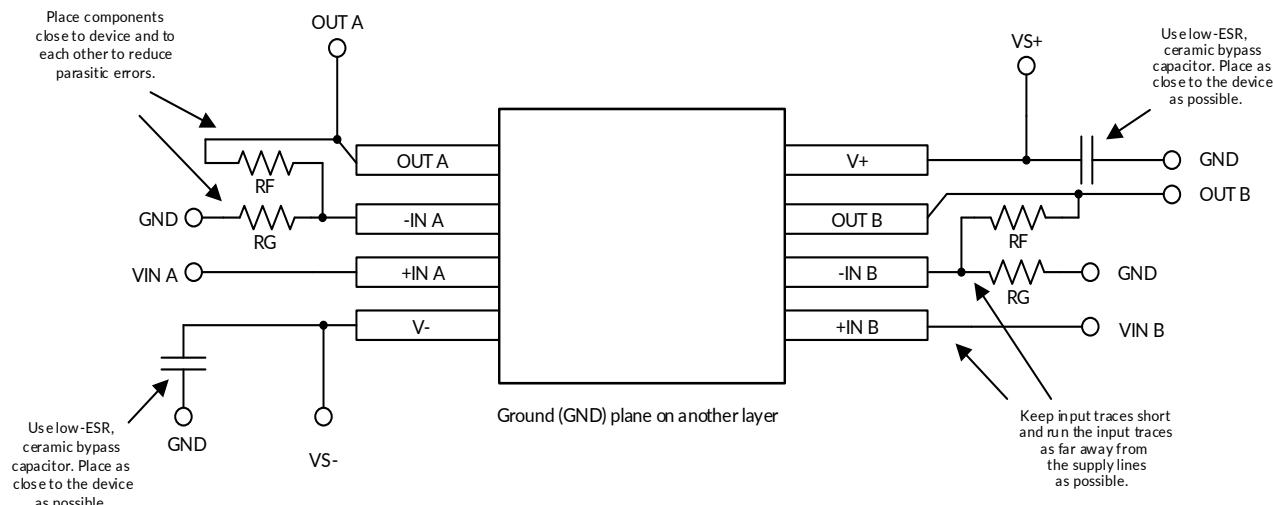


Figure 16. Active Low-Pass Filter


9 LAYOUT

9.1 Layout Guidelines


Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a $0.1\mu\text{F}$ capacitor closely across the supply pins.

These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

9.2 Layout Example

Figure 17. Schematic Representation

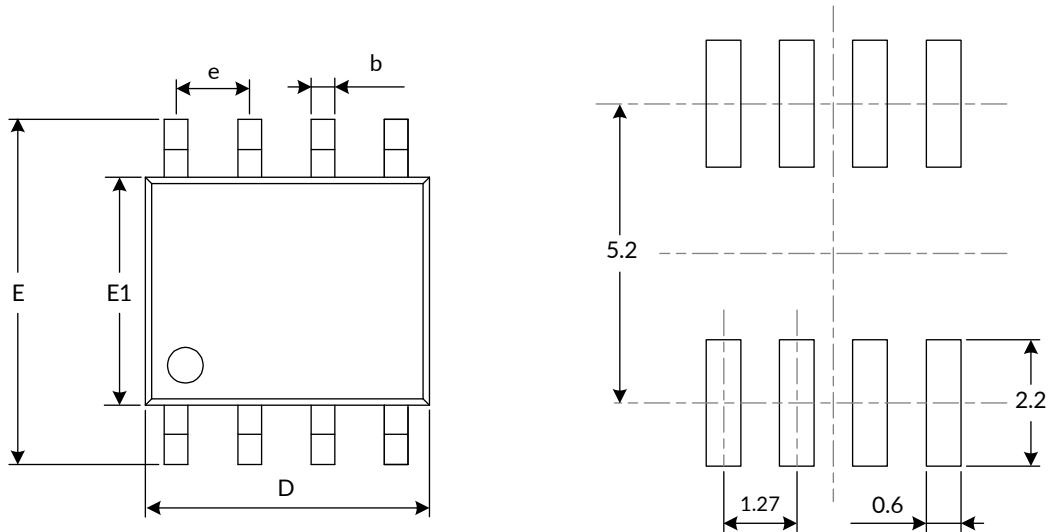
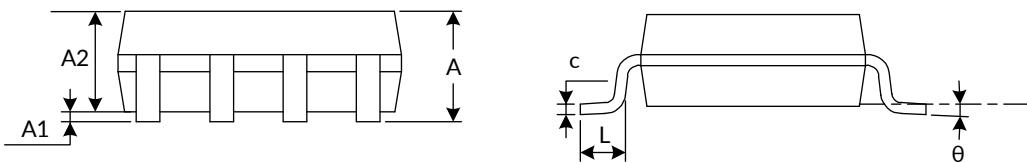


Figure 18. Layout Example

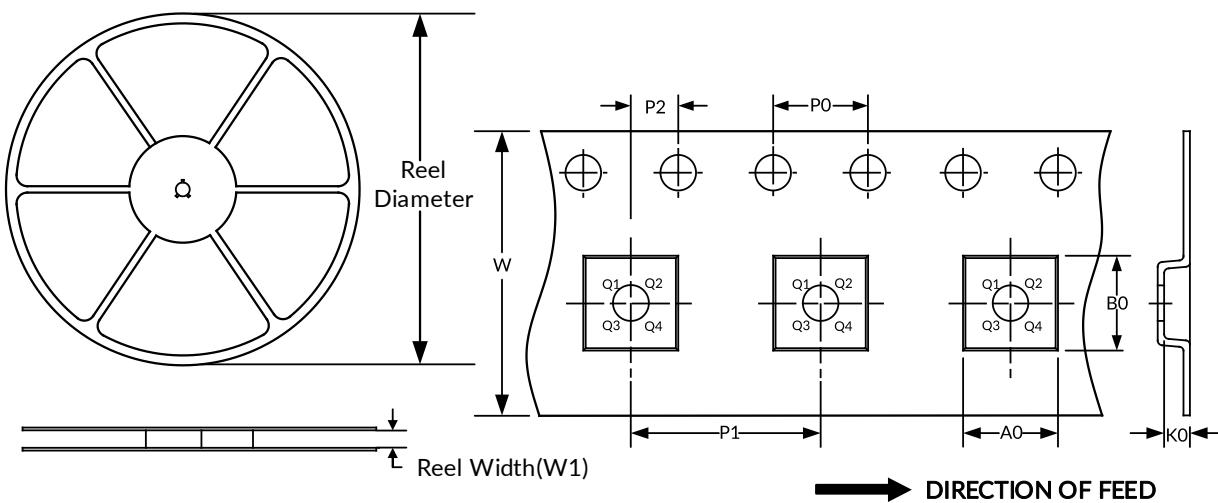

NOTE: Layout Recommendations have been shown for dual op-amp only, follow similar precautions for Single and four.

10 PACKAGE OUTLINE DIMENSIONS

SOP8⁽³⁾

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A ⁽¹⁾	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
c	0.170	0.250	0.007	0.010
D ⁽¹⁾	4.800	5.000	0.189	0.197
e	1.270(BSC) ⁽²⁾		0.050(BSC) ⁽²⁾	
E	5.800	6.200	0.228	0.244
E1 ⁽¹⁾	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°


NOTE:

1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
3. This drawing is subject to change without notice.

11 TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOP8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

NOTE:

1. All dimensions are nominal.
2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability. Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products. You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.