

13MHz, Rail-to-Rail I/O CMOS Operational Amplifier

1 FEATURES

High Gain Bandwidth: 13MHz

 Rail-to-Rail Input and Output ±0.5mV Typical Vos

 Input Voltage Range: -0.1V to +5.6V with V_S = 5.5V

Supply Range: +2.7V to +5.5V

Shutdown: RS721SSpecified Up to +125°C

Micro Size Packages: SOT23-6

2 APPLICATIONS

Sensors

Photodiode Amplification

Active Filters

Test Equipment

• Driving A/D Converters

3 DESCRIPTIONS

The RS721S products offer low voltage operation and rail-to-rail input and output, as well as excellent speed/power consumption ratio, providing an excellent bandwidth (13MHz) and slew rate of 8V/µs. The op-amps are unity gain stable and feature an ultra-low input bias current.

The devices are ideal for sensor interfaces, active filters and portable applications. The RS721S include a shutdown mode. Under logic control, the amplifiers can be switched from normal operation to a standby current that is less than $1\mu A$. The RS721S operational amplifiers are specified at the full temperature range of -40°C to 125°C under single or dual power supplies of 2.7V to 5.5V.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RS721S	SOT23-6	2.90mm×1.60mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

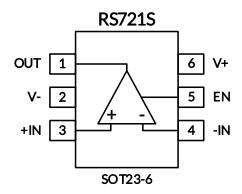
Table of Contents

1 FEATURES	1
2 APPLICATIONS	1
3 DESCRIPTIONS	1
4 REVISION HISTORY	3
5 PACKAGE/ORDERING INFORMATION (1)	4
6 PIN CONFIGURATION AND FUNCTIONS	5
7 SPECIFICATIONS	6
7.1 Absolute Maximum Ratings	6
7.2 ESD Ratings	6
7.3 Recommended Operating Conditions	6
7.4 Electrical Characteristics	7
7.5 Typical Characteristics	9
8 DETAILED DESCRIPTION	11
8.1 Overview	11
8.2 RS721S Enable Function	11
8.3 Phase Reversal Protection	11
8.4 EMIRR IN+ Test Configuration	11
9 APPLICATION AND IMPLEMENTATION	12
9.1 Application Note	12
9.2 25-kHz Low-Pass Filter	12
9.3 Design Requirements	12
9.4 Detailed Design Procedure	12
9.5 Application Curve	13
10 LAYOUTS	14
10.1 Layout Guidelines	14
10.2 Layout Example	14
11 PACKAGE OUTLINE DIMENSIONS	15
12 TADE AND DEEL INCODMATION	14

4 REVISION HISTORY

Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.0	2024/12/18	Preliminary version completed
A.1	2025/03/12	Initial version completed


5 PACKAGE/ORDERING INFORMATION (1)

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
RS721SXH	SOT23-6	6	1	-40°C ~125°C	721S	MSL3	Tape and Reel,3000

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) RUNIC classify the MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F, Please align with RUNIC if your end application is quite critical to the preconditioning setting or if you have special requirement.

6 PIN CONFIGURATION AND FUNCTIONS

PIN DESCRIPTION

	PIN		
NAME	RS721S	I/O (1)	DESCRIPTION
	SOT23-6		
-IN	4	I	Inverting input
+IN	3	I	Noninverting input
OUT	1	0	Output
EN	5	I	EN=logic high (device enabled) EN=logic low (device disabled) EN=no connect (device enabled)
V-	2	-	Negative (lowest) power supply
V+	6	-	Positive (highest) power supply

⁽¹⁾ I = Input, O = Output.

7 SPECIFICATIONS

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
	Supply, V _S =(V+) - (V-)			7		
Voltage	oltage Signal input pin (2)		(V-)-0.5	(V+) +0.5	V	
	Signal output pin (3)	(V-)-0.5	(V+) +0.5			
	Signal input pin ⁽²⁾	-10	10	mA		
Current	Signal output pin ⁽³⁾		-50	-50 50		
	Output short-circuits (4)		Contir	Continuous		
θJA	Package thermal impedance (5)	SOT23-6		230	°C/W	
	Operating range, T _A	-40	125			
Temperature	Junction, T _J ⁽⁶⁾	-40	150	°C		
	Storage, T _{stg}	-65	150			

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (4) Short-circuit to ground, one amplifier per package.
- (5) The package thermal impedance is calculated in accordance with JESD-51.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

THE TORK	owing Lob information is pr	ovided for handling of LOD Sensitive devices in an LOD protected are	a omy.	
			VALUE	UNIT
\/	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	\ \ \
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).

	· ·	MIN	NOM	MAX	UNIT
Supply voltage \(\(- \lambda \tau \)	Single-supply	2.7		5.5	\/
Supply voltage, $V_S = (V+) - (V-)$	Dual-supply	±1.35		±2.75	V

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

⁽³⁾ Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±50mA or less.

7.4 Electrical Characteristics

(At T_A = +25°C, V_S =2.7V to 5.5V, R_L = 10k Ω connected to V_S /2, and V_{OUT} = V_S /2, Full $^{(9)}$ = -40°C to 125°C, unless otherwise noted.) $^{(1)}$

	DADAMETED	COMPITIONS	_		RS7	215	
	PARAMETER	CONDITIONS	Τı	MIN (2)	TYP (3)	MAX (2)	UNIT
POWE	R SUPPLY		•	•			•
Vs	Operating Voltage Range		25°C	2.7		5.5	V
	Outros Accept Comment Down Association	V 5V I- 0 A	25°C		1.15	1.5	m 1
lq	Quiescent Current Per Amplifier	V _S =5V, Io=0mA	Full			1.85	mA
DCDD	D C	\\ 0.7\\+- F.F\\	25°C	75	93		٦D
PSRR	Power-Supply Rejection Ratio	V _S =2.7V to 5.5V	Full	70			dB
INPUT							
Vos	Input Offset Voltage	V _{CM} =V _S /2	25°C	-3	±0.5	3	mV
V OS	input Offset Voltage	V CM - V S/ Z	Full	-5		5	111 V
Vos Tc	Input Offset Voltage Average Drift		Full		±2.6		μV/°C
IB	Input Bias Current (4) (5)	V _{CM} =V _S /2	25°C		±1	±10	pА
los	Input Offset Current (5)	V _{CM} =V _S /2	25°C		±1	±10	pА
V_{CM}	Common-Mode Voltage Range	V _S = 5.5V	25°C	-0.1		5.6	V
		V _S = 5.5V,	25°C	73	90		
CMDD	Common-Mode Rejection Ratio	V _{CM} =-0.1V to 3.5V	Full	70			dB
CMRR	Common-Mode Rejection Ratio	V _S = 5.5V,	25°C	60	77		ub.
		V _{CM} =-0.1V to 5.6V	Full	59			
OUTPU	JT						
Aol	Open-Loop Voltage Gain	R _L =10kΩ, Vo=(V-)	25°C	105	127		dB
AOL	Open-Loop Voltage Gain	+0.1V to (V+)-0.1V	Full	94			
	Output Swing from Rail	V _S =±2.5V, R _L =10kΩ	25°C		10	20	mV
	Output Swing Hom Kaii	V5-±2.5V, INL-10K22	Full			25	111 V
l _{out}	Output Short-Circuit Current (6) (7)	V _S =±2.5V, Vo=0V	25°C	80	120		mA
1001	Output Short-Circuit Current	V5-±2.5V, V0-0V	Full	60			IIIA
C_{LOAD}	Capacitive Load Drive		25°C		100		pF
FREQU	ENCY RESPONSE						
SR	Slew Rate (8)	G=+1, C _L =100pF	25°C		8		V/µs
GBP	Gain-Bandwidth Product		25°C		13		MHz
ts	Settling Time, 0.1%	V _S =5V, G=+1, C _L =100pF, Step=2V	25°C		0.8		μs
tor	Overload Recovery Time	V _{IN} •Gain≥V _S , G=-10	25°C		0.4		μs
NOISE							
En	Input Voltage Noise	f = 0.1Hz to 10Hz, V _S =5V	25°C		5		μV_{PP}
ENABL	E/SHUTDOWN (RS721S)						
I _{Q(OFF})	Supply Current in Shutdown		25°C		0.5	1	μΑ
toff			25°C		3		μs
ton			25°C		20		μs
\/	Shut Davin	V _S =3.3V	25°C	0		0.5	V
V_L	Shut Down	V _S =5V	25°C	0		0.7	V

V	Amplifiants Active	V _S =3.3V	25°C	1.1	3.3	V
VH	Amplifier is Active	V _S =5V	25°C	3.2	5	>

- (1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (4) Positive current corresponds to current flowing into the device.
- (5) This parameter is ensured by design and/or characterization and is not tested in production.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.
- (7) Short circuit test is a momentary test.
- (8) Number specified is the slower of positive and negative slew rates.
- (9) Specified by characterization only.

7.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_S =5V, R_L = 10k Ω connected to $V_S/2$, V_{OUT} = $V_S/2$, unless otherwise noted.

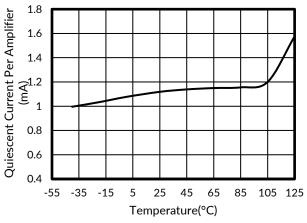


Figure 1. Quiescent Current vs Temperature

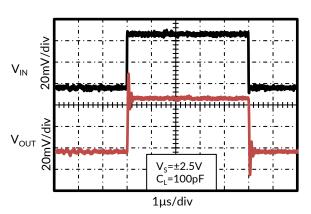


Figure 3. Small-Signal Step Response

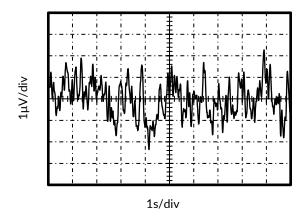


Figure 5. 0.1Hz to 10Hz Input Voltage Noise

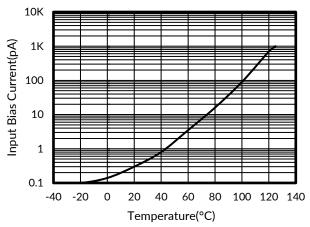


Figure 2. Input Bias Current vs Temperature

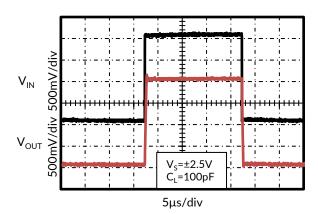


Figure 4. Large-Signal Step Response

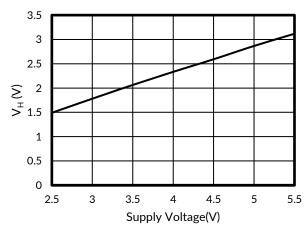


Figure 6. V_H vs Supply Voltage

9 / 17 www.run-ic.com

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At $T_A = +25$ °C, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

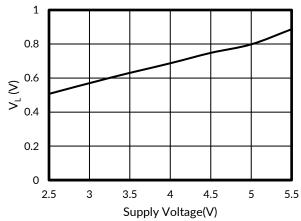


Figure 7. V_L vs Supply Voltage

8 DETAILED DESCRIPTION

8.1 Overview

The RS721S are high precision, rail-to-rail operational amplifiers that can be run from a single-supply voltage 2.7V to 5.5V (± 1.35 V to ± 2.75 V). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. Good layout practice mandates use of a 0.1μ F capacitor place closely across the supply pins.

8.2 RS721S Enable Function

The RS721S includes a shutdown mode. Under logic control, the amplifiers can be switched from normal mode to a standby current of 1μ A. When the Enable pin is connected to high, the amplifier is active. Connecting Enable low disables the amplifier, and places the amplifier, and places the output in a high-impedance state.

8.3 Phase Reversal Protection

The RS721S has internal phase-reversal protection. Many op amps exhibit phase reversal when the input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input of the RS721S prevents phase reversal with excessive common-mode voltage. Instead, the appropriate rail limits the output voltage. This performance is shown in figure 8.

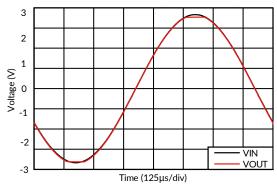


Figure 8. Output Waveform Devoid of Phase Reversal During an Input Overdrive Condition

8.4 EMIRR IN+ Test Configuration

Figure 9 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational amplifier noninverting input pin using a transmission line. The operational amplifier is configured in a unity-gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting dc offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that can interfere with multimeter accuracy.

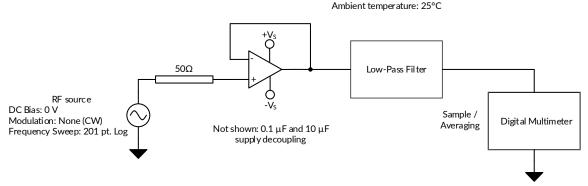


Figure 9. EMIRR IN+ Test Configuration Schematic

11 / 17 www.run-ic.com

9 APPLICATION AND IMPLEMENTATION

Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Note

The RS721S are high precision, rail-to-rail operational amplifiers that can be run from a single-supply voltage 2.7V to 5.5V (± 1.35 V to ± 2.75 V). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. Good layout practice mandates use of a 0.1μ F capacitor place closely across the supply pins.

Typical Applications 9.2 25-kHz Low-Pass Filter

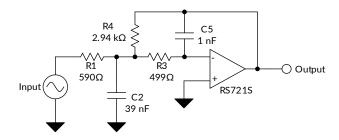


Figure 10. 25-kHz Low-Pass Filter

9.3 Design Requirements

Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing. The RS721S devices are ideally suited to construct high-speed, high-precision active filters. Figure 10 shows a second-order, low-pass filter commonly encountered in signal processing applications.

Use the following parameters for this design example:

- Gain = 5 V/V (inverting gain)
- Low-pass cutoff frequency = 25 kHz
- Second-order Chebyshev filter response with 3-dB gain peaking in the passband.

9.4 Detailed Design Procedure

The infinite-gain multiple-feedback circuit for a low-pass network function is shown in Figure 10. Use Equation 1 to calculate the voltage transfer function.

$$\frac{\text{Output}}{\text{Input}}(s) = \frac{-1/R_1 R_3 C_2 C_5}{S^2 + (S/C_2)(1/R_1 + 1/R_3 + 1/R_4) + 1/R_3 R_4 C_2 C_5}$$
(1)

This circuit produces a signal inversion. For this circuit, the gain at dc and the low-pass cutoff frequency are calculated by Equation 2:

Gain =
$$\frac{R_4}{R_1}$$

 $f_c = \frac{1}{2\pi} \sqrt{(1/R_3 R_4 C_2 C_5)}$ (2)

9.5 Application Curve

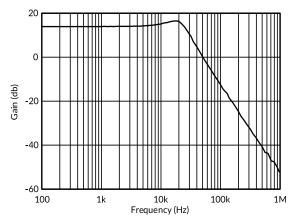
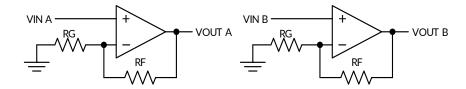


Figure 11. Low-Pass Filter Transfer Function


10 LAYOUTS

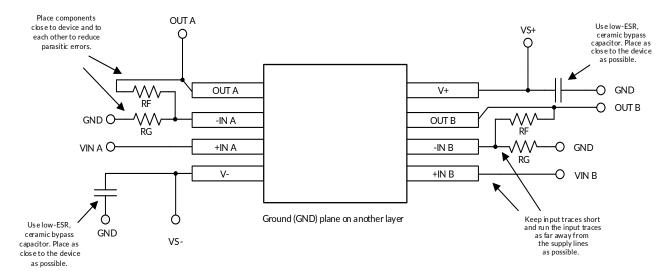
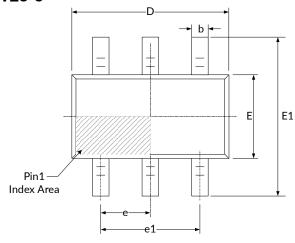
10.1 Layout Guidelines

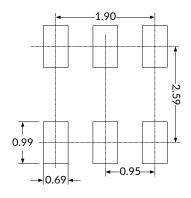
Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a $0.1\mu F$ capacitor closely across the supply pins.

These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

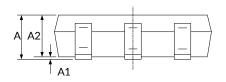
10.2 Layout Example

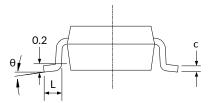
Figure 12. Schematic Representation

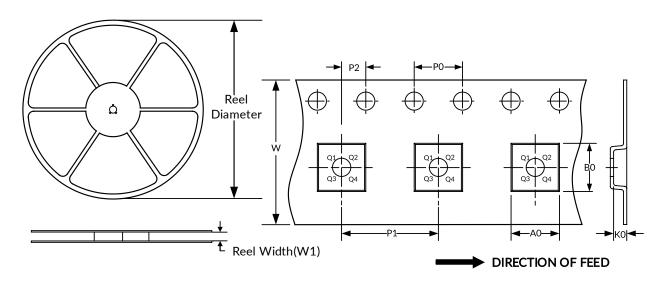

Figure 13. Layout Example

NOTE: Layout Recommendations have been shown for dual op-amp only, follow similar precautions for Single and four.




11 PACKAGE OUTLINE DIMENSIONS SOT23-6 (3)

RECOMMENDED LAND PATTERN (Unit: mm)


Compleal	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
A ⁽¹⁾	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100 0.200		0.004	0.008
D ⁽¹⁾	2.820	3.020	0.111	0.119
E ⁽¹⁾	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC) (2)	0.037(BSC) ⁽²⁾
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-6	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.