

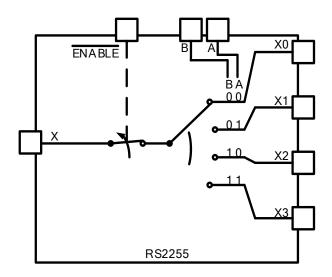
CMOS 4-Channel Analog Multiplexer/Demultiplexer

FEATURES

- -3dB Bandwidth: 180MHz
- Single Supply Operation +2.5V to +5.5V
- Low ON Resistance, 48Ω(TYP) With 5V Supply
- High Off-Isolation: -83dB (RL = 50Ω, f = 1MHz)
- Break-Before-Make Switching
- Binary Address Decoding on Chip
- Operating Temperature Range: -40°C to +125°C
- PACKAGES: MSOP-10

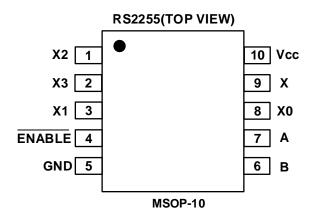
APPLICATIONS

- Sensors
- Analog and Digital Multiplexing and Demultiplexing
- A/D and D/A Conversion
- Signal Gating
- Battery-Operated Equipment
- Factory Automation
- Appliances
- Communications Circuits


DESCRIPTION

The RS2255 is a CMOS analog IC configured as 4-channel multiplexers. This CMOS device can operate from 2.5 V to 5.5 V.

The RS2255 device are digitally-controlled analog switches. It has low on-resistance (48Ω TYP) and very low off-leakage current (1nA TYP).


The RS2255 is available in Green MSOP-10 packages. It operates over an ambient temperature range of -40°C to +125°C.

Functional Diagrams of RS2255

PIN CONFIGURATIONS

PIN DESCRIPTION

NAME	PIN	FUNCTION
X2	1	Analog Switch Normally Open Inputs 2.
Х3	2	Analog Switch Normally Open Inputs 3.
X1	3	Analog Switch Normally Open Inputs 1.
ENABLE	4	Inhibit. Drive ENABLE low or connect to GND for normal operation.
ENADLE	4	Drive ENABLE high or connect to Vcc to turn all switches off.
GND	5	Ground.
В	6	Digital Address "B" Input.
Α	7	Digital Address "A" Input.
X0	8	Analog Switch Normally Open Inputs 0.
Х	9	Analog Switch Common.
Vcc	10	Positive Analog and Digital Supply Voltage.

FUNCTION TABLE

ENABLE	INPUT	STATES	ONLOUIANINEL (C)
INPUT	В	Α	ON CHANNEL(S)
1	Х	Х	NONE
0	0	0	X0
0	0	1	X1
0	1	0	X2
0	1	1	Х3

X=Don't care

NOTE: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

ABSOLUTE MAXIMUM RATINGS (1)

V _{CC} to GND0.3 to 6V
Input Terminals, Voltage. (2) 0.3 to (V+) + 0.3V
Continuous Current into Any Terminal±20mA
Peak Current, X_
(Pulsed at 1ms,10% duty cycle) ±40mA
Storage Temperature65°C to +150°C
Operating Temperature40°C to +125°C
Junction Temperature+150°C
Package Thermal Resistance @ T _A = +25°C
MSOP-10
Lead Temperature (Soldering, 10s)260°C
ESD Susceptibility
HBM3000V
MM200V

- (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
- (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING	PACKAGE OPTION
RS2255	RS2255AXN	-40°C ~+125°C	MSOP-10	RS2255A	Tape and Reel,3000

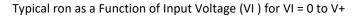
3

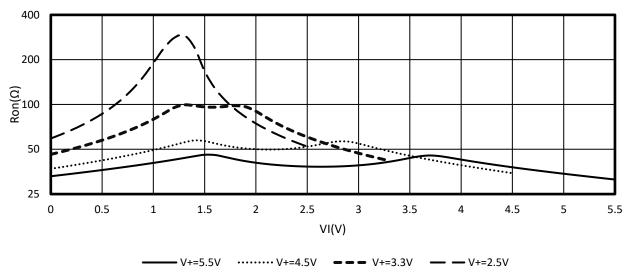
ELECTRICAL CHARACTERISTICS

Vcc = 5.0 V or 3.3 V, $FULL = -40 ^{\circ}\text{C}$ to $+125 ^{\circ}\text{C}$, Typical values are at TA = $+25 ^{\circ}\text{C}$. (unless otherwise noted)

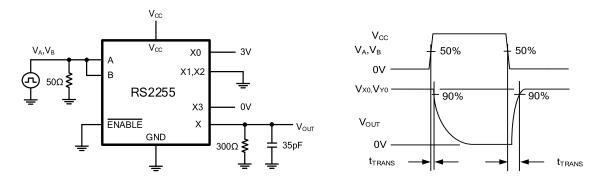
PARAMETER	SYMBOL	CONDITIONS	Vcc	T _A	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	Vx_, Vx			FULL	0		Vcc	٧
		Vcc=5V, Ix=1mA	5V	+25°C		48	65	Ω
On-Resistance			50	FULL			70	Ω
On-Inesistance	Ron	V _{CC} =3.3V, I _X =1mA	3.3V	+25°C		100	130	Ω
		VCC=3.3 V, 1X = 1111A	3.5 V	FULL			140	Ω
On-Resistance Match	ΔR_ON	Vcc=5V, Ix =1mA Switch ON	5V	+25°C		1.5	5	Ω
Between Channels	ΔΙΌΝ	VCC=3V, IX = IIIIA SWILGII ON	30	FULL			5.3	Ω
On-Resistance Flatness	R _{FLAT(ON)}	V _{CC} =5V, I _X =1mA Switch ON 5V	+25°C		17	25	Ω	
On-Resistance Flatness			50	FULL			28	Ω
X Off, X Off, X On,	I _{x_(OFF)} , I _{x(OFF)} , I _{x(ON)}	V _{CC} =5V, V _X _=1V, 4.5V V _X =4.5V, 1V	5V	+25°C		1	100	n A
Leakage Current		Vcc=3.3V, Vx_=1V, 3V Vx=3V, 1V	3.3V	+25°C		1	100	n A
DIGITAL CONTROL INP	UTS ⁽¹⁾							
Logic Input Logic	$V_{AH}, V_{BH},$		5V	+25°C	1.7			٧
Threshold High	$V_{\overline{ENABLE}}$		3.3V	+25°C	1.7			V
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{ENABLE}		5V	+25°C			0.5	٧
			3.3V	+25°C			0.5	V
Input-Current High	I _{AH} , I _{BH} , I _{ENABLE}	Va, V _B , V _{ENABLE} = V _{CC}	3.3V to 5V	+25°C		1	100	n A
Input-Current Low	I _{AL} , I _{BL} , I _{ENABLE}	VA, VB, VENABLE OV	3.3V to 5V	+25°C		1	100	n A

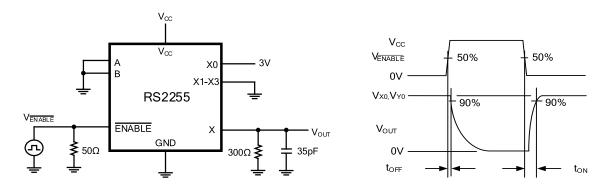
⁽¹⁾ All unused digital inputs of the device must be held at Vio or GND to ensure proper device operation.

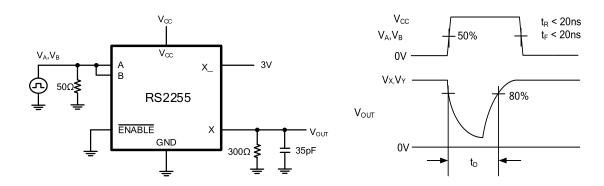

ELECTRICAL CHARACTERISTICS (continued)


Vcc= 5.0 V or 3.3V, FULL= -40°C to +125°C Typical values are at TA = +25°C (unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	Vcc	TEMP	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS								
A.I. T. W. T.		V_{X} = 3V/0V, R_{L} = 300 Ω , C_{L} = 35pF, Test Circuit 1	5V	+25°C		120		ns
Address Transition Time	t _{TRANS}	V_X = 3V/0V, R_L = 300 Ω , C_L = 35pF, Test Circuit 1	3.3V	+25°C		210		ns
ENABLE Turn-On Time	ton	V_{X} = 3V, R_L = 300 Ω , C_L = 35pF, Test Circuit 2	5V 3.3V	+25°C		70 130		ns
ENABLE Turn-Off Time	toff	V_{X} = 3V, R_L = 300 Ω , C_L = 35pF, Test Circuit 2	5V 3.3V	+25°C		80 120		ns
Internal A, B, C Rise Time	t _R		5V 3.3V	+25°C		50 80		ns
Internal A, B, C Fall Time	t _F		5V 3.3V	+25°C		60 85		ns
			5.5V			50		ns ns
Break-Before-Make Time Delay	t _D	V_{X} = 3V, R_L = 300 Ω , C_L = 35pF, Test Circuit 3		+25°C		80		ns
Observation	Q	Rs = 0Ω , C _L = 1nF, Test Circuit 4	5V	-+25°C		6		рC
Charge Injection		$R_S = 0\Omega$, $C_L = 1$ nF, Test Circuit 4	3.3V			4		рС
Crosstalk	XTALK	f = 1MHz, Test Circuit 5	5V	+25°C		-110		dB
Off Isolation	Oiso	$R_L = 50\Omega$, f = 1MHz, Test Circuit 5	5V	+25°C		-83		dB
-3dB Bandwidth	BW	$R_L = 50\Omega$	5V 3.3V	+25°C		180 180		MHz MHz
Input Off-Capacitance	Cx_(OFF)	f = 1MHz, Test Circuit 6	5V	+25°C		4.7		pF
Output Off-Capacitance	C _{X(OFF)}	f = 1MHz, Test Circuit 6	5V	+25°C		12.7		pF
Output On- Capacitance	C _{X(ON)}	f = 1MHz, Test Circuit 6	5V	+25°C		16		pF
Total Harmonic Distortion	THD	$R_L = 600\Omega,5V_{P-P}, f = 20Hz \text{ to } 20kHz$	5V	+25°C		0.7		%
POWER REQUIREMENTS								
Power Supply Range	Vcc			FULL	2.5		5.5	V
Power Supply Current	Icc	$V_{CC} = 5.0V$, V_A , V_B , $V_{\overline{ENABLE}} = V_{CC}$ or 0	5V	+25°C		0.001	2	μА
		V_{CC} = 3.3V, V_A , V_B , $V_{\overline{ENABLE}}$ = V_{CC} or 0	3.3V	+25°C		0.001	1	μΑ

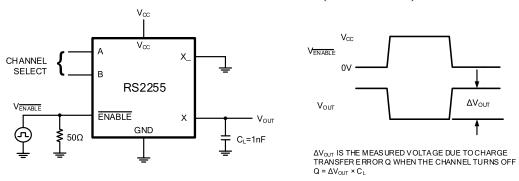

TYPICAL CHARACTERISTICS



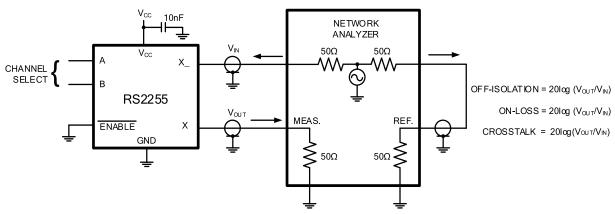

Parameter Measurement Information

Test Circuit 1. Address Transition Times (trans)

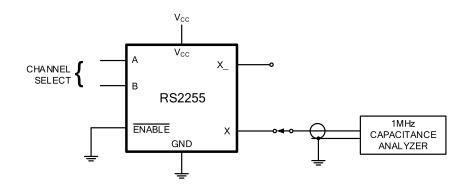
Test Circuit 2. Switching Times (ton, toff)



Test Circuit 3. Break-Before-Make Time Delay (tD)


www.run-ic.com

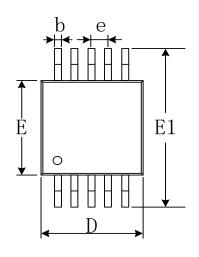
Parameter Measurement Information (continued)

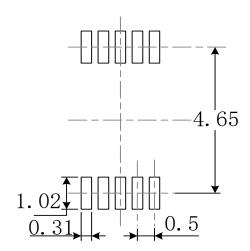


Test Circuit 4. Charge Injection (Q)

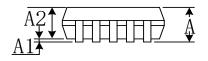
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

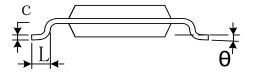
Test Circuit 5. Off Isolation, On Loss


Test Circuit 6. Capacitance


8

www.run-ic.com




PACKAGE OUTLINE DIMENSIONS MSOP-10

RECOMMENDED LAND PATTERN (Unit: mm)

Comple of	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
Α	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.180	0.280	0.007	0.011		
С	0.090	0.230	0.004	0.009		
D	2.900	3.100	0.114	0.122		
е	0.50(BSC)	0.020(BSC)			
E	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		