

Precision Operational Amplifiers

FEATURES

- Low Offset Voltage: ±20µV (TYP)
- Low Bias Current:±1nA (TYP)
- Gain Bandwidth Product: 1.9MHz
- Rail-to-Rail Output
- Low Quiescent Current: 1mA (TYP)
- Overload Recovery Time: 1.5us
- Supply Voltage Range: 5V to 36V
- No External Components Required
- Extended Temperature: -40°C to +125°C
- Micro SIZE PACKAGES: SOP8

APPLICATIONS

- Optical Network Control Circuits
- Sensors and Controls
- Wireless Base Station Control Circuits
- Cellular and Cordless Phones
- Photodiode Amplification
- Precision Filters
- Instrumentation
- A/D Converters
- Laptops and PDAs
- Medical and industrial instrumentation

DESCRIPTION

The RS07 is a low noise, low offset voltage and high voltage operational amplifier, which can be designed into a wide range of applications. The RS07 has a gain-bandwidth product of 1.9MHz, a slew rate of 1V/us and a quiescent current of 1mA at wide power supply range.

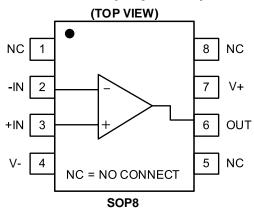
The RS07 is designed to provide optimal performance in low noise systems. It provides rail-to-rail output swing into heavy loads.

The RS07 is available in Green SOP8 packages. It operates over an ambient temperature range of -40° C to $+125^{\circ}$ C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)						
RS07	SOP8	4.90mm x 3.90mm						
(1) For all available	a paakagaa laaa tha	ordoroblo oddondum ot						

(1) For all available packages, see the orderable addendum at the end of the data sheet.



Revision History Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.0	2021/11/22	Initial version completed
A.0.1	2022/3/1	Initial version completed

Pin Configuration and Functions (Top View)

Pin Description

	PIN					
NAME	R\$07	I/O	DESCRIPTION			
	SOP8					
-IN	2	Ι	Negative (inverting) input			
+IN	3	Ι	Positive (noninverting) input			
NC	1,5,8	-	No internal connection (can be left floating)			
OUT	6	0	Output			
V-	4	-	Negative (lowest) power supply			
V+	7	-	Positive (highest) power supply			

RS07

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
	Supply, $V_S=(V+) - (V-)$		36	
Voltage	Signal input pin ⁽²⁾	(V-) -0.3	(V+) +0.3	V
	Signal output pin ⁽³⁾	(V-) -0.3	(V+) +0.3	
	Signal input pin ⁽²⁾	-10	10	mA
Current	Signal output pin ⁽³⁾	-150	150	mA
	Output short-circuit ⁽⁴⁾	Conti	nuous	
	Operating range, T _A	-40	125	
Temperature	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±150mA or less.

(4) Short-circuit to ground, one amplifier per package.

ESD Ratings

			VALUE	UNIT	
V	Electrostatic discharge	Human-body model (HBM)	±2500	V	ĺ
V(ESD)	Lieurostano discriarge	Machine Model (MM)	±300	v	ĺ

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
	Single-supply	5		36	V
Supply voltage, Vs= (V+) - (V-)	Dual-supply	±2.5			v

Thermal Information: RS07

		RS07	
	THERMAL METRIC	8PINS	UNIT
		SOP8	
Reja	Junction-to-ambient thermal resistance	116	°C/W
Rejc (top)	Junction-to-case (top) thermal resistance	60	°C/W
$R_{\Theta JB}$	Junction-to-board thermal resistance	56	°C/W
ψ_{JT}	Junction-to-top characterization parameter	12.8	°C/W
ψ_{JB}	Junction-to-board characterization parameter	98.3	°C/W
Rejc (bot)	Junction-to-case (bottom) thermal resistance	N/A	°C/W

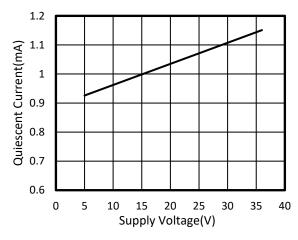
PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER			PACKAGE MARKING ⁽¹⁾	PACKAGE OPTION	
RS07	RS07XK	-40°C ~125°C	SOP8	RS07	Tape and Reel,4000	

NOTE:

(1) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

ELECTRICAL CHARACTERISTICS


(At $T_A = +25^{\circ}C$, $V_S = \pm 2.5V$ to $\pm 18V$, $V_{CM} = 0V$, $V_{OUT} = 0V$ and $R_L = 2k\Omega$ connected to 0V, Full = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITION	TEMP	MIN	ΤΥΡ	MAX	UNIT	
NPUT CHARACTERISTICS								
Input Offset Voltage	Vos	$\lambda = 0 \lambda$	+25°C		±20			
Input Offset Voltage	VOS	V _{CM} = 0V FI			±300		μV	
Input Offset Voltage Average Drift	Vos Tc		FULL		±3		µV/°C	
Power-Supply Rejection Ratio	PSRR	Vs= 5V to 36V	+25°C		115		dB	
	FORN	VS= 3V to 30V	FULL	100			uВ	
Input Bias Current	Iв		+25°C		±1		nA	
	IB		FULL			±40		
Input Offset Current	los		+25°C		±1		nA	
-	105		FULL			±30		
Input Common-Mode Voltage Range	Vсм		FULL	(V-) +0.5		(V+)- 2	V	
Common Mode Poinction Patio		$(1/1) \pm 0$ 51/ $< 1/_{out} < (1/\pm) - 21/_{out}$	+25°C		120		dB	
Common-Mode Rejection Ratio	ejection Ratio CMRR ((V-) +0.5V < V _{CM} < (V+)–2V	FULL	100			uБ	
Open Leon Veltage Cain		Vs=±15V, Vo=(V-)-0.6V to	+25°C		150		ЧР	
Open-Loop Voltage Gain	Aol	(V+)-0.6V, RL=10KΩ	FULL	125			- dB	
NOISE PERFORMANCE								
Input Voltage Noise	enp-p	f= 0.1Hz to 10Hz	+25°C		4		μV_{PP}	
Input Voltage Noise Density	en	f= 1KHz	+25°C		20		nV/√Hz	
Input Current Noise Density	İn	f= 1KHz	+25°C		1		pA/√H:	
OYNAMIC PERFORMANCE								
Slew Rate	SR	G=+1	+25°C		1.0		V/µs	
Settling Time to 0.01%	ts	Vs = ±2.5V, V _{PP} =1V, G = +1 C _L =100PF	+25°C		1.5		μs	
Gain-Bandwidth Product	GBP	V_{OUT} = 50m V_{P-P} , C_L = 10pF	+25°C		1.9		MHz	
Overload Recovery Time	tor	V _{IN} × G ≥ V _S	+25°C		1.5		μs	
Phase Margin	φο	V _{OUT} = 100mV _{P-P} , C _L = 10pF	+25°C		60		0	
Total Harmonic Distortion + Noise	THD+N	V _{IN} = 1V _{RMS} , G = +1, f = 1kHz	+25°C		TBD		%	
OUTPUT CHARACTERISTICS								
	Vон		+25°C	17.90			v	
Output Voltage Swing from Rail	Vol	Vs=±18V, R∟=10 KΩ	+25°C			-17.90	v	
Output Source Current	ISOURCE	1/2 = 1401/2	10500		90			
Output Sink Current	Isink	$V_{\rm S} = \pm 18V$	+25°C		-70		mA	
POWER SUPPLY								
Operating Voltage Range	Vs		FULL	5		36	V	
Quiecopt Current/Amplifier		lour-0mA	+25°C		1		mA	
Quiescent Current/ Amplifier	lα	Ι _{ΟUT} =0mA	FULL		1.2		- mA	

TYPICAL CHARACTERISTICS

At T_A = +25°C, V_S = ±18V, unless otherwise noted.

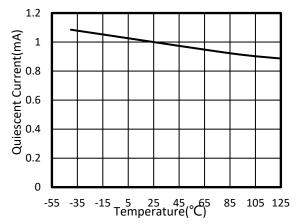


Figure 3. Quiescent Current vs Temperature

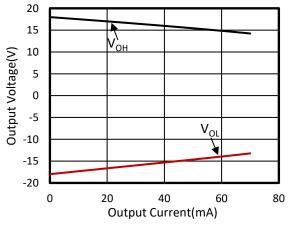


Figure 5. Output Voltage vs Output Current

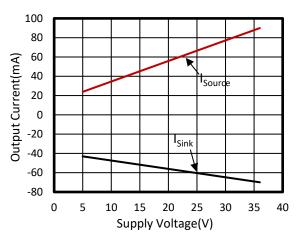


Figure 2. Supply Voltage vs Output Current

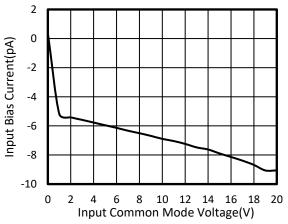


Figure 4. Input Bias Current vs Input Common Mode Voltage

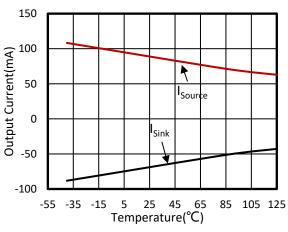
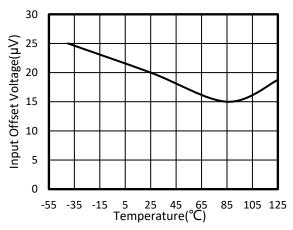




Figure 6. Output Current vs Temperature

TYPICAL CHARACTERISTICS

At T_A = +25°C, V_S = ±18V, unless otherwise noted.

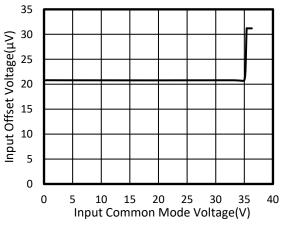


Figure 9. Input Offset Voltage vs Input Common Mode Voltage

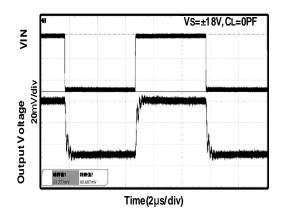


Figure 11. Small-Signal Step Response

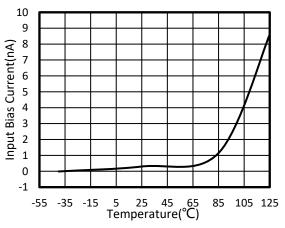
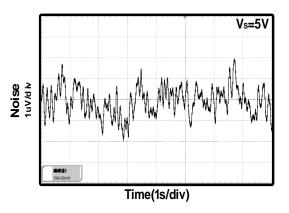
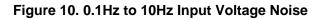




Figure 8. Input Bias Current vs Temperature

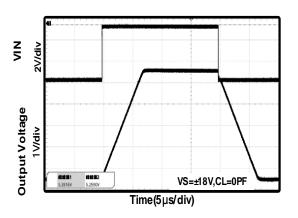


Figure 12. Large-Signal Step Response

Power Supply Bypassing and Layout

The RS07 operates from either a single 5V to 36V supply or dual $\pm 2.5V$ to $\pm 18V$ supplies. For single-supply operation, bypass the power supply V+ with a 0.1μ F ceramic capacitor which should be placed close to the V+ pin. For dual-supply operation, both the V+ and the V- supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors. 10μ F tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

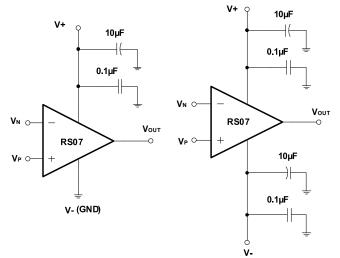


Figure 13. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for RS07 circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

Differential Amplifier

The circuit shown in Figure 14 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

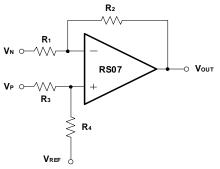


Figure 14. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 15 performs the same function as that in Figure 14 but with a high input impedance.

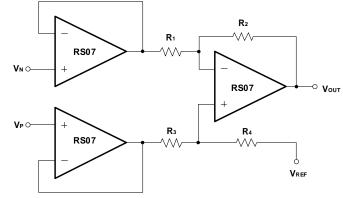


Figure 15. Instrumentation Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 16 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

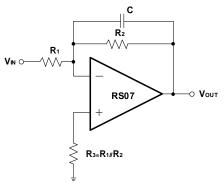
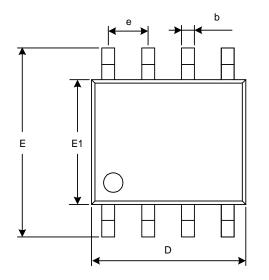
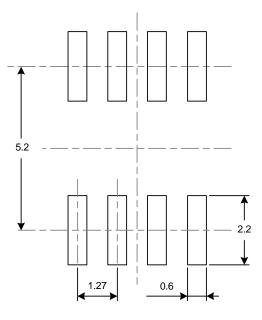
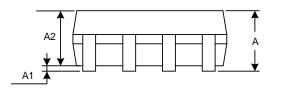
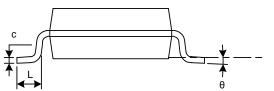
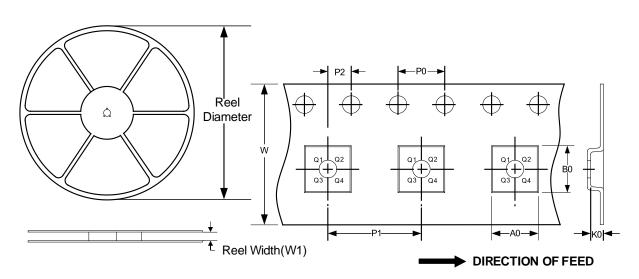




Figure 16. Active Low-Pass Filter




PACKAGE OUTLINE DIMENSIONS SOP8

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions I	In Millimeters	Dimension	s In Inches
Symbol	Min	Мах	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510 0.013		0.020
с	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270	(BSC)	0.050	(BSC)
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOP8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1